Causation

- Successful prevention of disease depends on :
 - Knowledge of the causation
 - Dynamics of transmission
 - Identity risk factors and risk groups
- **Preventable** causes of disease (BEINGS)
 - Biological and Behavioural factors
 - Environmental
 - Immunological
 - Nutritional
 - Genetic factors
 - Service , social , spiritual factors
- **Epidemiologic Triad** → Agent , host , environment
- Agent can be → biological, physical, chemical, nutritional, mechanical, social.
- Hazard → sth with potential to cause harm
- Harm → death and major injury and any form of physical or mental ill health
- Risk → a measure of the probability (likelihood of an event occurring)
- Risk types:
 - Absolute → incidence of disease in any population
 - Relative → <u>ratio</u> of incidence rate <u>in group exposed</u> to hazard to the incidence rate in the non exposed group
 - Attributable → difference in incidence rates between exposed and non exposed groups
- Cause → antecedent <u>event / condition / characteristic</u> that is necessary for disease occurs
- Association → occurrence of two variables more frequently than expected
- Types of association :
 - Spurious → when the observed association between the suspected cause and the effect may not be real
 - Indirect → statistical association
 - Direct (causal)
 - One to one
 - Multifactorial → sufficient&necessary cause / web of causation(interaction)
- ullet Two variables called to causally related if \to any change in one is followed by a change in the other
- This initial criteria used by Henle&koch
- Hills criteria
 - Strength of association

- <u>Temporal relationship</u>
- o <u>Distribution of disease</u>
- Gradient (dose-response effect)
- Consistency
- Specificity
- Biological plausibility
- Experimental models
- Preventive trials
- <u>Temporal relationship</u> → exposure to the causative factor must occur before the onset of disease (more likely to acute communicable disease)
- <u>Strength of association</u> → the larger the relative risk the more likely the association is causal → <u>strengthened if there's dose and</u> duration response relationship
- <u>Dose response</u> relationship:
 - More intense and longer exposure → more frequent and severe disease
- <u>Dose duration</u> relationship:
 - Cumulative effect
- Specificity of association → one to one relationship between the cause and the effect
- Consistency of association → an association has to be replicated and confirmed by different investigators (y3ni single study not enough enu n7ki fe causal association)
- Biological plausibility \rightarrow causal association is substantiated if biological plausibility (معقولية) .
- Confounding (fundamental problem of causal interfere) → bias due to inherent (unobservable) differences in risk between exposed and underexposed population → lack of comparability
- Confounding → Mixing the effect of the exposure on disease with the effect of another factor that's associated with the exposure
- 3 criteria for a variable to be a confounder:
 - C must be a risk factor for D in the unexposed population
 - C must be associated with E (exposure)
 - The association between C and E <u>must not be due entirely to</u>
 the effect of E on C → C can't be intermediate between E and D

- Predominantly Genetic or Environmental
 - Genetic → stable incidence + clustered in families
 - Environmental → incidence varies rapidly :
 - Over time
 - Between genetically similar population
- Pyramid of association : from head to base
 - Causal and mechanisms understood
 - Causal
 - Noncausal
 - Confounded
 - o Spurious / artefact
 - Chance
- Core of epidemiology → association between disease and postulated causal factors
- Difficulty in demonstrating causality :
 - Complexity and long history of many human disease
 - Ethical restraints of human experimentation
- Judgments of cause and effect are → tentative
- Causal models broaden causal perspectives
- Cause → genetic / environmental
- Cause:
 - Sufficient : its presence always leads to disease development
 - Necessary : without it the outcome never develops
 - \circ Component : can't itself develop disease \rightarrow supportive
- $\bullet \quad \textbf{Collectively} \rightarrow$
 - Necessary + component → sufficient cause
- Conditions
 - \circ Necessary \rightarrow if not found , the outcome doesn't occur
 - Sufficient condition
- Necessary cause must always precede the effect
- Sufficient → inevitably initiates or produces an effect